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Oscillatory mean-field dynamos with a spherically symmetric, isotropic helical turbulence
parameter a
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Until recently, the existence of oscillatory mean-field dynamos of thea2 type with spherically symmetric
and isotropic turbulence parametera was an open question. We find such dynamos by means of an evolution-
ary strategy, and we illustrate the spectral properties of the corresponding dynamo operators.
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For decades, homogeneous dynamos have been the
ject of purely theoretical research that tried to explain m
netic field generation in such inaccessible regions as
Earth’s deep interior, the Sun’s convection zone, or the sp
arms of galaxies. In 1999, this situation has changed with
first successful dynamo experiments at the sodium facili
in Riga@1,2# and Karlsruhe@3,4#. Now, dynamos run in labo
ratory, and their kinematic behavior can be predicted with
error margin of a few percent@5#. Dynamo theory is not
unaffected by those developments in dynamo ‘‘engineerin
Whereas in the past the relevance of a dynamo model
ultimately judged by its applicability to real cosmic bodies
is now sensible to ‘‘tailor’’ particular models which coul
show interesting features, e.g., field reversals or m
switching, in the laboratory.

These developments give also new impetus on spe
analysis of dynamo operators. One of the simplest dyna
models is a mean-field dynamo with a spherically symme
and isotropic helical turbulence parametera. In particular,
the case with constanta is one of the rare models in dynam
theory that can be solved semianalytically@6,7#. Though the
construction of a spherically symmetric, isotropica2 dy-
namo seems away from realistic cosmic dynamos with th
for instance, typical antisymmetry with respect to the eq
torial midplane, the basic analysis of this simplest case ofa2

dynamos is a necessary starting point for the investigatio
more realistic dynamos. Despite its simplicity, the sphe
cally symmetric, isotropica2 dynamo exhibits a rich spectra
structure if a is allowed to vary with the radius@8,9#. In
particular, complex eigenvalues have been found for a n
ber of models@9–12#. However, it always turned out tha
other modes with higher degreesl of the spherical harmonic
had larger growth rates than the considered oscillatory m
~cf. Ref. @13#!. An explicit example of a spherically symme
ric, isotropic a2 dynamo with the dominating mode bein
oscillatory does not exist up to present.

Thus motivated, our concrete goal in the present pape
to solve the following inverse problem: Find, for ana2 dy-
namo with spherically symmetric, isotropica, a radial de-
pendencea(r ) so that the eigenmode forl 51 has zero
growth rate and nonzero frequency and that all other mo
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have negative growth rates. This task fits into a class
recently treated inverse problems concerning the determ
tion of a(r ) from the demand that certain spectral propert
~a few given eigenvalues@8,9#! or spatial properties of the
magnetic field~‘‘hidden dynamos,’’@14#! are fulfilled.

In the following, we will shortly describe the forward
solver that is used for the determination of the eigenvalu
and the evolutionary strategy~ES! which we employ to solve
the inverse problem formulated above.

We start with the induction equation for a mean-field d
namo model with a spherically symmetrica coefficient~for
the basics of mean-field dynamos, see Ref.@7#!. Inside a
sphere of radiusR the electrical conductivitys is constant,
whereas it is zero in the exterior. In the interior of the sph
the magnetic fieldB has to satisfy the induction equation

]B

]t
5“3~aB!1

1

m0s
DB ~1!

and the source-free condition

“•B50. ~2!

At the boundaryr 5R, the magnetic field has to matc
continuously to a potential field in the exterior.

As usual@7#, we decomposeB into a poloidal and a tor-
oidal part,

B52“3~r3“S!2r3“T, ~3!

with the defining scalarsS andT expanded in spherical har
monics according to

S~r ,u,f!5(
l 51

`

(
m52 l

l

Rsl
m~r !Yl

m~u,f!exp~l l t !, ~4!

T~r ,u,f!5(
l 51

`

(
m52 l

l

t l
m~r !Yl

m~u,f!exp~l l t !. ~5!

For the remainder of the paper, we will measure t
length in units ofR, the time in units ofm0sR2, and the
parametera in units of (m0sR)21.

Using Eqs.~3!–~5!, the induction equation~1! can be
transformed into the eigenvalue equation system:
©2003 The American Physical Society02-1
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l l ,nsl5
1

r

d2

dr2
~rsl !2

l ~ l 11!

r 2
sl1a~r !t l , ~6!

l l ,nt l5
1

r

d

dr S d

dr
~rt l !2a~r !

d

dr
~rsl ! D2

l ~ l 11!

r 2
@ t l

2a~r !sl #. ~7!

In our particular case of a spherically symmetric, isotro
a there is no coupling between field modes differing in t
degreel of the spherical harmonics. The orderm of the co-
efficients of the defining scalars has been skipped as it d
not show up in the equations. The radial wave numbe
labeled by the indexn.

The boundary conditions atr 51 are as follows:

dsl

dr U
r 51

1~ l 11!sl~1!5t l~1!50. ~8!

A shooting technique and a fifth-order Runge-Ku
method were used to solve this system numerically, utiliz
and adapting standard routines from Ref.@15#. This code has
been validated by comparison with exact results~available
only for a5const), and with the results of other codes,
cluding an integral equation solver@16#.

For the description of the inverse spectral solver we w
be very short, as it has been described in detail in Refs.@8,9#.
We use an ES, with a ‘‘population’’ of ‘‘individuals’’@param-
eter vectors that describe the functiona(r )] evolving in a
‘‘fitness’’ landscape according to principles taken from bio
ogy. Finally, the evolution is stopped when the populat
has gathered in the~hopefully! global maximum of the fit-
ness landscape. Note that in every step of the evolution
eigenvalue equation system~6!–~8! is solved correctly, with-
out any compromise with other functionals to be minimize

This evolutionary strategy is very robust, and it can eas
be used for the solution of different inverse spectral pr
lems @8,9#. For the solution of our task we define the fitne
F@a# of a functiona(r ) according to

F@a#52@Re~l1,1@a#!#2

2„11e1tanh$Im~l1,1@a#!2 f %…21

2„11e1tanh$2Re~l2,1@a#!%…21

2„11e1tanh$2Re~l3,1@a#!%…21. ~9!

What is the motivation for this choice of the fitness? The fi
term, to begin with, tries to keep the growth rate Re(l1,1@a#)
of the eigenmode with (l 51un51) as close as possible t
zero. The second term makes the frequency Im(l1,1@a#) of
this mode repel from the parameterf which will be consid-
ered as variable. The third and the fourth terms are chose
as to force the growth rates for (l 52un51) and (l 53un
51) to be less than zero. In a strict sense one should
demand the growth rates for all the higher values ofl andn
to be less than zero, but this can also be checkeda posteriori.
The small valuee, which is only used to avoid numerica
overflows, is chosen as 1026.
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It should be mentioned that the ES can be combined w
a certain regularization of the functionsa(r ). By means of a
regularization parameter we can adjust the allowed m
quadratic curvature ofa(r ) @8#. It turns out that if we start
with a large regularization parameter that keeps the m
quadratic curvature ofa(r ) small, we do not get any solution
of our problem. Only with a rather small regularization p
rameter that allows more curvature ofa(r ) the ES yields
solutions.

In Fig. 1 we represent, for four different values of th
parameterf, the functionsa(r ) resulting as solutions of the
ES. Note that the functionsa(r ) change their sign at leas
once. As we started with large regularization paramet
without getting solutions, the curves in Fig. 1 can be cons
ered as the ‘‘simplest’’ ones~in the sense of minimal mea
quadratic curvature! that fulfill our spectral demands. Th
analytical expressions for the curves are given in the follo
ing table:

f a(r )

0.7 219.881347.37r 22656.71r 31335.52r 4

2.0 220.951399.40r 22765.69r 31387.61r 4

5.0 221.461426.41r 22806.73r 31392.28r 4

9.0 223.931594.35r 221243.02r 31665.27r 4

For these functionsa(r ), the growth rates of the eigen
modes with (l 51, . . . ,3un51) and the frequency of the
eigenmode with (l 51un51) are as follows:

f Re(l1,1@a#) Im(l1,1@a#) Re(l2,1@a#) Re(l3,1@a#)

0.7 0.00 4.98 25.08 212.02
2.0 0.00 6.02 25.35 213.02
5.0 0.01 7.24 23.64 210.82
9.0 20.11 9.30 21.42 29.32

These values have been validated in ana posteriorianaly-
sis of the spectrum for the functionsa(r ).

FIG. 1. The functionsa(r ) resulting from the evolutionary strat
egy with fitness functionF@a# according to Eq.~9! for four differ-
ent values off.
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Evidently, the ES delivers functionsa(r ) that fulfill the
spectral demands formulated above. The (l 51un51) eigen-
mode with zero growth rate is oscillatory, while the rema
ing eigenmodes have growth rates less than zero. To b
the safe side, we have also computed the growth rates
modes withl .3, which also turned out to be less than ze

For the sake of illustration, let us concentrate in the f
lowing on the spectral properties for the special case witf
55. In Fig. 2, we show the growth rates for the eigenmod
with ( l 51un51,2) and (l 52, . . . ,6un51) as functions of
C, which is used to scale the magnitude ofa(r ) @for C50
we have the free decay case,C51 corresponds to the ob
tained functionsa(r )]. Details of this plot close to the criti-
cal pointC51 are shown in Fig. 3.

At C50, all modes start as nonoscillatory modes~with
purely real eigenvalues!. At C50.818, the two modes with
( l 51un51) and (l 51un52) merge and continue as a pa
with complex conjugate eigenvalues~only a single line is
shown!. Interestingly enough, atC51.097 this pair splits off
again and the two modes with (l 51un51) and (l 51un
52) continue separately, again with purely real eigenvalu

FIG. 2. Special casef 55.0. Growth rates for the eigenfunction
with ( l 51un51,2) and (l 52, . . . ,6un51).

FIG. 3. Special casef 55.0. Growth rates for the eigenfunction
with ( l 51un51,2) and (l 52, . . . ,5un51). Details close to the
critical point C51.
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In between, atC51.00 the pair crosses the abscissa, he
dynamo action occurs. All modes with higherl and n have
still negative growth rates atC51.00.

In Figs. 4 and 5, the growth rates and frequencies for
modes with (l 51un51, . . . ,7) areplotted. These figures
give a flavor of the complexity of the spectrum, with i
merging and splitting points of modes with differentn.

In this respect, another aspect should be addres
Whereas the spectra for the functionsa(r ) for f
50.7,2.0,5.0 are rather similar, there is a transition if we
to f 59.0. Figure 6 shows the corresponding spectru
Whereas in Fig. 4 we observed a merging of the modes w
n51 andn52, we get now a merging of the modes wi
n52 andn53. For largerC, the modes withn51 andn
54 come together, meeting at the same point with the co
mon line of the complex conjugatedn52(3) modes.

Evidently, the dynamo operators connected with the
tained functionsa(r ) show very interesting spectral feature
which warrants further analysis.

A complete characterization of thea(r ) profiles that ful-
fill our spectral demands would require an extensive para
eter study. At least we can get a certain feeling on the bro

FIG. 4. Special casef 55.0. Growth rates for the eigenfunction
with ( l 51un51, . . . ,7).

FIG. 5. Special casef 55.0. Frequencies for the eigenfunction
with ( l 51un51, . . . ,7).
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ness of the ‘‘corridor’’ for a limited type of deformations. Fo
this purpose, we start with the functiona(r )5221.46
1426.41r 22806.73r 31392.28r 4 which was the solution for
f 55. Now let us change the coefficient of ther 4 term, leav-
ing all other coefficients unchanged. Figure 7 shows the
per and the lower limits of the corresponding deformatio
that still belong to our oscillatory class of dynamos. Abo
the upper limit, the (l 52un51) mode starts to dominate
Below the lower limit, the (l 54un51) mode dominates.

In summary, we have found a class of oscillatory me
field dynamos with spherically symmetric, isotropic turb
lence parametera working in a finite volume with homoge
neous conductivity. The obtained functionsa(r ) are smooth
and by no means exotic or of a pronounced layer ty

FIG. 6. Special casef 59.0. Growth rates for the eigenfunction
with ( l 51un51, . . . ,7).
te

-
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@10,11#, but they are characterized by at least one chang
sign along the radius. In the sense of minimal averaged q
dratic curvature, our solutions seem to be the simplest o

As for the back-reaction regime, an interesting behav
of the considered dynamo models is conceivable. Eve
slight modification of the functionsa(r ) due to the action of
the Lorentz forces could trigger a transition to a nonosci
tory mode~either with l 51 or with higherl ).

We do not claim any particular astrophysical relevance
our result. However, keeping in mind that the Karlsruhe d
namo experiment is ana2 dynamo~although with an aniso-
tropic a tensor! one could imagine a generalization of o
method to similar laboratory dynamos.

FIG. 7. Modified functionsa(r ) of the type obtained forf
55, but with varying coefficient of ther 4 term, which are oscilla-
tory dynamos.
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@11# K.-H. Rädler and H.-J. Bra¨uer, Astron. Nachr.308, 101~1987!.
@12# G. Schubert and K. Zhang, Astrophys. J. Lett.532, L149

~2000!.
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