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Oscillatory mean-field dynamos with a spherically symmetric, isotropic helical turbulence
parameter «
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Until recently, the existence of oscillatory mean-field dynamos ofdheype with spherically symmetric
and isotropic turbulence parametewas an open question. We find such dynamos by means of an evolution-
ary strategy, and we illustrate the spectral properties of the corresponding dynamo operators.
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For decades, homogeneous dynamos have been the sultave negative growth rates. This task fits into a class of
ject of purely theoretical research that tried to explain mag+ecently treated inverse problems concerning the determina-
netic field generation in such inaccessible regions as th#on of a(r) from the demand that certain spectral properties
Earth’s deep interior, the Sun’s convection zone, or the spirala few given eigenvalueg8,9]) or spatial properties of the
arms of galaxies. In 1999, this situation has changed with théagnetic field(*hidden dynamos,’[14]) are fulfilled.
first successful dynamo experiments at the sodium facilities In the following, we will shortly describe the forward
in Riga[1,2] and Karlsruhd3,4]. Now, dynamos run in labo- Solver that is used for the determination of the eigenvalues,
ratory, and their kinematic behavior can be predicted with arfnd the evolutionary strated§zS) which we employ to solve
error margin of a few percerf5]. Dynamo theory is not the inverse problem formulated above.
unaffected by those developments in dynamo “engineering.”
Whereas in the past the relevance of a dynamo model w
ultimately judged by its applicability to real cosmic bodies, it
is now sensible to “tailor” particular models which could
show interesting features, e.g., field reversals or mod
switching, in the laboratory.

These developments give also new impetus on spectral JB
analysis of dynamo operators. One of the simplest dynamo
models is a mean-field dynamo with a spherically symmetric
and isotropic helical turbulence parameter In particular,
the case with constant is one of the rare models in dynamo
theory that can be solved semianalyticdiy7]. Though the
construction of a spherically symmetric, isotrop¢ dy-
namo seems away from realistic cosmic dynamos with their, -
for instance, typical antisymmetry with respect to the equa- AF the boundaryr=R,. th? magnetic f'eld. has to match
torial midplane, the basic analysis of this simplest caseof continuously to a potential field n the eXteT'or-
dynamos is a necessary starting point for the investigation of, AS Usual7], we decompos@ into a poloidal and a tor-
more realistic dynamos. Despite its simplicity, the spheri-C1dal part,
cally symmetric, isotropier? dynamo exhibits a rich spectral
structure if « is allowed to vary with the radiuf8,9]. In

articular, complex eigenvalues have been found for a num- - , )
Eer of models[g—lz].gHowever, it always turned out that with _the deflnlng scalarS and T expanded in spherical har-
other modes with higher degrelesf the spherical harmonics monics according to
had larger growth rates than the considered oscillatory mode
(cf. Ref.[13]). An explicit example of a spherically symmet-
ric, isotropic ® dynamo with the dominating mode being
oscillatory does not exist up to present.

Thus motivated, our concrete goal in the present paper is w |
to solve the following inverse problem: Find, for art dy- T(r,0,0)=> >
namo with spherically symmetric, isotropie, a radial de- =1 m=-1
pendencea(r) so that the eigenmode fdr=1 has zero
growth rate and nonzero frequency and that all other modes For the remainder of the paper, we will measure the

length in units ofR, the time in units ofuyoR?, and the
parameterr in units of (uyoR) 1.
*Electronic address: F.Stefani@fz-rossendorf.de Using Egs.(3)—(5), the induction equatiorfl) can be
"Electronic address: G.Gerbeth@fz-rossendorf.de transformed into the eigenvalue equation system:

We start with the induction equation for a mean-field dy-
mo model with a spherically symmetiiccoefficient(for

the basics of mean-field dynamos, see Re&). Inside a
sphere of radiuR the electrical conductivityr is constant,
whereas it is zero in the exterior. In the interior of the sphere
fhe magnetic field has to satisfy the induction equation

1
EZVX(Q’B)‘FWAB D

and the source-free condition

V.B=0. )

B=—-VX(rxVS)—rxVT, 3)

© I
S(r.6,¢)=2, 2 RYNY(6,$)expnD), (4

tOYI(0, pexpnt).  (5)
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In our particular case of a spherically symmetric, isotropic
a there is no coupling between field modes differing in the
degreel of the spherical harmonics. The orderof the co-
efficients of the defining scalars has been skipped as it doe -
not show up in the equations. The radial wave number is '250 02 04 06 0.8 p
labeled by the index.

The boundary conditions at=1 are as follows:

FIG. 1. The functionse(r) resulting from the evolutionary strat-

ds egy with fitness functior[ «] according to Eq(9) for four differ-
ar +(I+1)s(1)=1,(1)=0. (8 ent values of.
r=1

A shooting technique and a fifth-order Runge-Kutta |t should be mentioned that the ES can be combined with
method were used to solve this system numerically, utilizing certain regularization of the functiongr). By means of a
and adapting standard routines from R&b]. This code has  regularization parameter we can adjust the allowed mean
been validated by comparison with exact resisailable  quadratic curvature of(r) [8]. It turns out that if we start
only for a=const), and with the results of other codes, in-with a large regularization parameter that keeps the mean
cluding an integral equation solvgt6]. quadratic curvature af(r) small, we do not get any solution

For the description of the inverse spectral solver we willof our problem. Only with a rather small regularization pa-
be very short, as it has been described in detail in R8fS].  rameter that allows more curvature afr) the ES vyields
We use an ES, with a “population” of “individuals[param-  go|utions.
eter vectors that describe the functietr)] evolving in a In Fig. 1 we represent, for four different values of the
“fitness” landscape according to principles taken from biol- parametef, the functionsa(r) resulting as solutions of the
ogy. Finally, the evolution is stopped when the populationgs, Note that the functiona(r) change their sign at least
has gathered in thehopefully) global maximum of the fit-  once. As we started with large regularization parameters
ness landscape. Note that in every step of the evolution thgithout getting solutions, the curves in Fig. 1 can be consid-
eigenvalue equation syste(®—(8) is solved correctly, with-  ered as the “simplest” onefin the sense of minimal mean
out any compromise with other functionals to be minimized.quadratic curvatupethat fulfill our spectral demands. The

This evolutionary strategy is very robust, and it can easilyanalytical expressions for the curves are given in the follow-
be used for the solution of different inverse spectral probjng taple:

lems[8,9]. For the solution of our task we define the fitness

F[«] of a functiona(r) according to f a(r)
Fla]=—[Re\, {a])] 0.7 —19.88+347.37r2—656.71r3+ 335.52r*
‘ . 2.0 —20.95+ 399.40r?—765.69r 3+ 387.61r*
—(A+e+taniim(ry fa])—f}) 50  —21.46+426.41r2—806.73r3+392.28r"
—(1+ e+tan{—Re\, fa])}) 2 9.0 —23.93+594.35r?—1243.02r%+665.27r*
—(1+e+tanf{—Re\g{a])}) L. 9

For these functions(r), the growth rates of the eigen-
What is the motivation for this choice of the fitness? The firstmodes with (=1,...,3n=1) and the frequency of the
term, to begin with, tries to keep the growth rate Ref «])  eigenmode with[(=1|n=1) are as follows:

of the eigenmode withl&1|n=1) as close as possible to
zero. The second term makes the frequencyNmf{«]) of I Re(udal) Imyda]) ReGzdal) Re(sial)

this mode repel from the parametewhich will be consid- (.7 0.00 4.98 —5.08 —12.02
ered as variable. The third and the fourth terms are chosensog  .0o 6.02 -5.35 —13.02
as to force the growth rates fot£2|n=1) and (=3|n 545 (01 724 _ 364 _10.82

=1) to be less than zero. In a strict sense one should alsssiO
demand the growth rates for all the higher value$ ahdn '
to be less than zero, but this can also be cheekpdsteriori

The small valuee, which is only used to avoid numerical  These values have been validated iragposteriorianaly-
overflows, is chosen as 16. sis of the spectrum for the functiong(r).

—-0.11 9.30 —1.42 —9.32
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FIG. 2. Special casé=5.0. Growth rates for the eigenfunctions FIG. 4. Special casé=5.0. Growth rates for the eigenfunctions
with (I=1|n=1,2) and (=2, ...,6n=1). with (I=1|n=1,...,7).

Evidently, the ES delivers functions(r) that fulfill the  In between, aC=1.00 the pair crosses the abscissa, hence
spectral demands formulated above. The {{n=1) eigen- dynamo action occurs. All modes with highkeandn have
mode with zero growth rate is oscillatory, while the remain-still negative growth rates & =1.00.
ing eigenmodes have growth rates less than zero. To be on In Figs. 4 and 5, the growth rates and frequencies for the
the safe side, we have also computed the growth rates fanodes with (=1|n=1,...,7) areplotted. These figures
modes withl >3, which also turned out to be less than zero.give a flavor of the complexity of the spectrum, with its

For the sake of illustration, let us concentrate in the fol-merging and splitting points of modes with differemt
lowing on the spectral properties for the special case With  In this respect, another aspect should be addressed.
=5. In Fig. 2, we show the growth rates for the eigenmodedVhereas the spectra for the functions(r) for f
with (I=1|n=1,2) and (=2, ...,6n=1) as functions of =0.7,2.0,5.0 are rather similar, there is a transition if we go
C, which is used to scale the magnitudeafr) [for C=0 to f=9.0. Figure 6 shows the corresponding spectrum.
we have the free decay cage=1 corresponds to the ob- Whereas in Fig. 4 we observed a merging of the modes with
tained functionsx(r)]. Details of this plot close to the criti- n=1 andn=2, we get now a merging of the modes with
cal pointC=1 are shown in Fig. 3. n=2 andn=3. For largerC, the modes witm=1 andn

At C=0, all modes start as nonoscillatory modagth =4 come together, meeting at the same point with the com-
purely real eigenvalugsAt C=0.818, the two modes with mon line of the complex conjugatet=2(3) modes.
(I=1|n=1) and (=1|n=2) merge and continue as a pair  Evidently, the dynamo operators connected with the ob-
with complex conjugate eigenvalugsenly a single line is tained functionsx(r) show very interesting spectral features
shown). Interestingly enough, & = 1.097 this pair splits off which warrants further analysis.
again and the two modes with £1|n=1) and (=1|n A complete characterization of the(r) profiles that ful-
=2) continue separately, again with purely real eigenvaluedill our spectral demands would require an extensive param-

eter study. At least we can get a certain feeling on the broad-
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FIG. 3. Special casé=5.0. Growth rates for the eigenfunctions
with (I=1|n=1,2) and (=2, ...,3n=1). Details close to the FIG. 5. Special casé=5.0. Frequencies for the eigenfunctions
critical pointC=1. with (I=1|n=1,...,7).
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_ FIG. 6. Special caseé=9.0. Growth rates for the eigenfunctions FIG. 7. Modified functionsa(r) of the type obtained forf
with (I=1[n=1,....7). =5, but with varying coefficient of the* term, which are oscilla-
tory dynamos.

ness of the “corridor” for a limited type of deformations. For

this purpose, we start with the functioa(r)=-21.46 [10,11], but they are characterized by at least one change of
+426.4%2—806.733+392.28“ which was the solution for ~ sign along the radius. In the sense of minimal averaged qua-
f=5. Now let us change the coefficient of thtterm, leav-  dratic curvature, our solutions seem to be the simplest ones.
ing all other coefficients unchanged. Figure 7 shows the up- As for the back-reaction regime, an interesting behavior
per and the lower limits of the corresponding deformationsof the considered dynamo models is conceivable. Even a
that still belong to our oscillatory class of dynamos. Aboveslight modification of the functiona(r) due to the action of
the upper limit, the (=2|n=1) mode starts to dominate. the Lorentz forces could trigger a transition to a nonoscilla-
Below the lower limit, the (=4|n=1) mode dominates. tory mode(either withl =1 or with higherl).

In summary, we have found a class of oscillatory mean- We do not claim any particular astrophysical relevance of
field dynamos with spherically symmetric, isotropic turbu- our result. However, keeping in mind that the Karlsruhe dy-
lence parameter working in a finite volume with homoge- namo experiment is an®> dynamo(although with an aniso-
neous conductivity. The obtained functionér) are smooth tropic a tensoy one could imagine a generalization of our
and by no means exotic or of a pronounced layer typemethod to similar laboratory dynamos.

[1] A. Galilitis et al,, Phys. Rev. Lett84, 4365(2000. (2001).

[2] A. Gallitis et al,, Phys. Rev. Lett86, 3024(2002. [10] K.-H. Radler (unpublished

[3]U. Miller and R. Stieglitz, Naturwissenschaftesv, 381 [11] K.-H. Radler and H.-J. Braer, Astron. Nachr308, 101(1987.
(2000. ) [12] G. Schubert and K. Zhang, Astrophys. J. L&i82 L149

[4] R. Stieglitz and U. Miler, Phys. Fluidsl3, 561 (2002J. (2000.

[5] A. Gailitis, O. Lielausis, E. Platacis, G. Gerbeth, and F. Ste-[13] G. Ridiger, D. Elstner, and M. Ossendrijver, e-print
fani, Rev. Mod. Phys74, 973 (2002. astro-ph/0212203.

[6] F. Krause and M. Steenbeck, Z. Naturforsch.22A, 671 [14] R. Kaiser and A. Tilgner, Phys. Rev. &, 037301(2002).
(1967. ] [15] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. F. Flan-

(7] F Krause and K.-H. Riler, Meaq-fleld Magnetqhydrodynam- nery, Numerical Recipe$Cambridge University Press, Cam-
ics and Dynamo Theor{Akademie-Verlag, Berlin, 1980 bridge, 1992

[8] F. Stefani and G. Gerbeth, Astron. NacB21, 235 (2000.

[9] F. Stefani and G. Gerbeth, Phys. Earth Planet. I8, 109 [16] M. Xu, F. Stefani, and G. Gerbeth, e-print astro-ph/0301321.

027302-4



